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We establish a precise connection between gelation of polymers in Lushnikov's 
model and the emergence of the giant component in random graph theory. This 
is achieved by defining a modified version of the Erd6s-R6nyi process; when 
contracting to a polymer state space, this process becomes a discrete-time 
Markov chain embedded in Lushnikov's process. The asymptotic distribution of 
the number of transitions in Lushnikov's model is studied. A criterion for a 
general Markov chain to retain the Markov property under the grouping of 
states is derived. We obtain a noncombinatorial proof of a theorem of Erd6s- 
R6nyi type. 

KEY WORDS: Gelation of polymers; giant component of random graph; 
grouping of states in a Markov chain; Erd6s-R~nyi theorem. 

1. I N T R O D U C T I O N  

The s tudy of aggrega t ion  react ions  a m o n g  po lymers  has a long his tory  in 
theore t ica l  physics. (1-3) If we l imit  ourselves to homogeneous  systems, 
where diffusion effects are ignored,  there are  essential ly two models  des- 
cr ib ing systems of po lymers  evolving th rough  the irreversible aggrega t ion  
reac t ion  

( j ) + ( k )  Rjk , ( j + k )  (1) 

whereby  po lymers  of sizes j and  k link themselves together  to form a 
po lymer  of  size j + k .  The first, and  by far the mos t  studied, is 
Smoluchovsk i ' s  differential  equa t ion  which describes the coupled  evolu t ion  
of  the densit ies o f j - m e r s  ( j =  1, 2, 3,...) in an infinitely extended system. (1'3'4~ 
The  second model ,  i n t roduced  by  Marcus  (5) and  further  s tudied by 
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Lushnikov, (6) is a continuous-time Markov chain where jumps between 
states of the finite system take place at a rate proportional to Rjk; see 
Section 2 and refs. 7, 8, and 10. Whichever model is used, it must account 
for the possibility that within a finite time, a polymer of macroscopic length 
has formed, a phenomenon known as gelation. (4'9'~~ 

Motivated by purely combinatorial considerations, Erd6s and R6nyi 
introduced in 1960 the following problem (11 ~3): consider a discrete-time 
Markov chain with state space consisting of the set of all graphs without 
multiple edges on N labeled vertices; transitions between states are effected 
by adding one edge to the present graph-state, any possible additional edge 
being chosen with equal probability. One then asks for "typical" properties 
of the graph-state of a large system after n steps, i.e., properties that hold 
with probability one as N tends to infinity; a number of these properties 
can be obtained, but the most striking is the size of the largest connected 
component of the graph-state after n steps: if n = cN, this size is of order 
log N whenever c < 1/2, whereas it becomes of order N when c > 1/2. The 
change in qualitative behavior that takes place around N/2 steps is known 
as the emergence of  the giant component in random graph theory. 

That gelation and emergence of the giant component are related 
phenomena is intuitively clear. It is the purpose of this article to make the 
connection rigorous. In Section 2 we give an overview of Lushnikov's 
model for reacting polymers. Some of the results are taken from ref. 10, 
while others, such as Theorem 3, are new. In Section 3 we describe the 
Erd6s-R6nyi theorem. We discuss the problem of contracting the graph- 
description of the Erd6s-R6nyi process into a polymer-description. We 
show that such a contraction destroys in general the Markov property. At 
this stage the following question arises naturally: what kind of grouping of 
states preserves the Markov property for general Markov chains? We 
supply a sufficient condition in Theorem 5. This leads us to consider a 
modified Erd6s-R6nyi process where graphs with cycles are excluded. This 
process retains the Markov property under the grouping of graph-states 
into polymer-states. Moreover, the corresponding reduced process is a dis- 
crete-time version of Lushnikov's process. The final connection between the 
two processes is made in Section 4 by studying the asymptotic distribution 
of the scaled number of transitions occurring during (0, t] in Lushnikov's 
process. This turns out to be concentrated at a value j(t) which increases 
continuously to 1 as t tends to infinity. This can be used to translate 
properties of the modified Erd6s-R6nyi process into results on Lushnikov's 
model and vice versa. So whenever one is interested in properties of 
the graph process that can be formulated in terms of polymers, one can 
use the simple Lushnikov process to derive these, thus avoiding tedious 
combinatorial arguments. 
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2. T H E  L U S H N I K O V  P R O C E S S  

The Lushnikov process is a continuous-time Markov chain with state 
space 

~ u =  n+NU: ~ j n j = N  (21 
j = l  

The j t h  component of the state vector _in represents the number ofj-mers. 
The only allowed transitions out of n are to states of the form 

+ = ~(nj, n2,..., t+lj- 1,..., n k - 1,..., nj+ k + 1,..., YIN) 
n-Jk ((nl ,n2, . . . ,nj-2, . . . ,nzj+ l,...,nu) 

if jv~k 
(3) 

if j=k  

and they occur with rate 

Qjk(n_)= ~llRiknjnk if j < k  

Ix-;-~,Riini(n j -  1) if j = k  
k z j v - -  

(4) 

This choice reflects the fact that in a homogeneous system, reaction (1) 
occurs with a probability proportional to the number of reactants and 
inversely proportional to the volume; here the density is taken to be equal 
to one, so that the volume coincides with the total number of units N. 

The probability of being in state n at time t obeys the usual forward 
equation: 

N N 

/5,(_n)= ~, Qjk(njk)p,(njk)-- 
j<~k=l j<~k=l 
nj+k~O njnk~O 

Qjk(n) pt(n) (5) 

where _nj~ is defined in a similar way to _n~. It turns out that for a whole 
class of reaction rates Rjk and initial conditions po(n), Eq. (5) can be solved 
in terms of a system of ordinary differential equations. (6,1~ Here we 
concentrate on the reaction rate 

Rjk = jk  (6) 

and the pure monomer initial condition 

po(n)={1 if n = ( 1 ,  O,O ..... O) 
0 otherwise (7) 
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T h e o r e m  1. With reaction rate (6) and initial condition (7), the 
solution of Eq. (5) is 

JO a~,j(t) N f l  if ~ jnj = N 
p,(_n) = 1 n~! j=l 

otherwise 

(8) 

where the functions aN, j(t ) obey the differential system 

f �9 =-11 -1 Ngtu, l(t ) l j2_ N )au, l(t ) 1 

( Ng~uj(t) = -~ r~_ l r(j-- r) au, r(t) aN, j--r(t) -- ~ (N-- j) jau./t), j >~ 2 
(9) 

and the initial condition 

f ( X ! )  1/N if j =  1 
aNd(O)= (10) 

if j~>l  

We refer to ref. 10 for a proof of this result and its extensions. The 
mean and factorial moments of the random variables Nj(t) that give the 
number ofj-mers of time t are related to the functions au, j(t ) in a simple 
way: 

Proposition 1. We have 

(N!)(N j)/N 
E[Nj( t )] -  (N- j ) !  e--J(N--j)t/2NaN'j(t) (11) 

E[Nj(t)(Nj(t)-  1)-I - 
(N!)(N 2j)/N 2j(N-- 2j)t/2N 2 

( N - 2 j ) !  e aN, j(t ) (12) 

Formula (11) is proven in ref. 10, and (12) can be obtained in a similar 
way. Although an explicit formula for aNd(t ) can be derived, (6'1~ we find 
it more convenient to work with the following bounds: 

P r o p o s i t i o n  2. We have 

where 

e-Jt/2Cj(t) <<. ~ <~ eJ2t/2Ne-Jt/ZCj(t) 

Cj(t) = - ~  (N!) j/N j j -  2 -~-. t j-1 

(13) 

(14) 
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ProoL The upper bound is proven in Lemma 1 of ref. 10. To get the 
lower bound, define the functions 5N, i(t) as the solutions of the equations 

I•N,I(t) = 1 ~ 

~aN, j(l) = 1 j~l  ~ J ~ (15) 
"~-~r~_.Z=l r ( j - - r )  ~tN, r(t ) aN, j r(t)--~aN, j(t), j>~2 

with initial condition (10). Obviously 

aN, j(t) >~ 5N, j(t) (16) 

[-note that the positivity of 5N, j(t)  can be proven as in Theorem 1 of 
ref. 10]. Define now 

Cj(t) = eJ'/25N, j ( t ) /N (17) 

and use (15) to obtain 

{ ~'l(t) = 0j_ 1 (18t 

~Tj(t)=�89 ~ r ( j - r )  Cr(t)C;_r(t), j>~2 
r=l 

which is well known to have (14) as its solution under the initial condition 
(10). (9'10) 1 

The double bound of Proposition 2 gives us the limit of aN, j ( t ) /N as 
N tends to infinity w i th j  fixed, and thus the limit of E[Nj(t)J/N. 

Corollary 1. (i) 

lim aN'j(t) "' 2t -- N ~  N = e - J e J ' / z / j !  J 1  (19) 

(ii) 

�9 j j  2t j -  1 

lira n [ N j ( t ) ] = e - J '  (20) 
N ~ c o  N j! 

Proof. Formula (19) follows from (13), (14), and the standard 
Stifling estimate: 

eY/SNN e U X/-~ <~ N! << eNN e-N ~ (21) 
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In order  to prove (20), we use (11), (13), and (14) to obtain 

N! e-J(1 j / 2 N ) t  J J  2 t  j -  1 

NJ(N- j ) !  j! 
N! j j  2t j -  1 

~< E [ N j ( t ) ]  ~< e-j(1-j /u)t  (22) 
N NJ(N- j ) !  j! 

The result follows since the combinator ia l  factor 

N!/NJ(N-j) !  = (1 - l /N)(1 - 2/N).. .  [1 - ( j -  1)/N] (23) 

tends to 1 as N tends to infinity. | 

The single most  impor tant  phenomenon  associated with systems of 
reacting polymers is that of gelation, that  is, the formation of a polymer of 
macroscopic size within a finite time. In order to study this effect, we 
compute  the density contr ibuted by polymers of size at least aN: 

1 
lim ~ ~ jE[Nj(t)] (24) 

N ~ ~ o~ N <~ j <~ N 

If, for some a > 0, t ~> 0, the above quanti ty is strictly positive, we say that 
gelation has occurred at time t. We proved in ref. 10 that  for any Borel 
subset A of [0, 1] 

1 E 

where 

jE[Nj( t )])  <<. -x~ginf It(x ) (25) 

It(x) = (1 - x) log(1 - x) - x log t + x(1 - x)t (26) 

This implies that if [a, /~] is an interval where It(x) is strictly positive, the 
density contr ibuted by polymers of size between aN and /~N tends to zero 
exponentially fast as N ~  ~ .  It remains to determine the intervals of 
positivity of It(x). In the following lemma we sharpen the results of ref. 10. 

I . e m m a  1. (i) Let t o<  1 be the smallest positive root  of the 
function 

f( t)  = [ 1 - u( t ) ]  { 1 + t[-1 - u( t ) ]  } + log u(t) (27) 
where 

1 
u(t) = ~ [-1 - (1 + 4t log t) m] (28) 

Then for t < to, It(x) is strictly positive on (0, 1 ] and vanishes at x = 0. 
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(ii) For t >  1, It(x) has a single positive root fl(t) in (0, 1]; I,(x) is 
positive in (0, fl(t)) and negative in (fl(t), 1). 

Remarks.  (i) Formula (27) is obtained from I',o(Xo)= I,o(Xo)= 0 by 
eliminating x0; see Fig. 1. 

(ii) The functions f and u of Lemma 1 are defined on the interval 
[ t l ,  1), where tl is the larger of the two roots of 1 + 4 t  log t. 

Formula (25) and Lemma 1 can be used to characterize gelation in 
Lushnikov's model. We quote the following result from ref. 10. 

T h e o r e m  2. (i) Let to be as in Lemma 1. Then for any t < t o ,  
0 < ~ < 1  

(ii) 

1 
lim -- ~ j E [ N j ( t ) ]  = 0 

N ~ o o  N N<~j<~N 

Let t, > 1 be the largest solution of 

t e  ( 1 - e ) t ~ e  1 

Then for any e > 0, 5 > 0, and t > t~ 

(29) 

(30) 

lira inf 1 j E [ U j ( t ) 3 > ~ l - X ~ ( t ) > o  (31) 
N ~  N ( f l ( t ) _ a ) N < ~ j ~ N  l 

where fl(t) is as in Lemma 1 and x~(t) is the smallest nonnegative solution 
of 

xe x = te-(1-~)t (32) 

I,(z) L(x) l,(x) 

I 

i 

I 

t < t ~  

I 

Xo 1 

t = t  o 

Fig. 1. The function It(x ) in the three different regimes. 
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Theo rem2( i )  shows that  there is no gelation up to time to; 
Theorem 2(ii) shows that at any time t > 1 the system is in a gelled state, 
with a polymer  of size at least Nil(t). 

To conclude this section, we give a more  detailed description of the 
system for t < to. No t  only is there no polymer  of macroscopic length in 
this regime, but  in fact the largest polymer  is of size at most  
( t - l - l o g t )  l l o g N .  

T h e o r e m  3. Let t < to, with to as in Lemma 1, and define 

Then for any e > 0 

~(t) = (t - 1 - log t) - 1 (33) 

1 
lim --  ~ jE[Nj(t)] = 0 (34) 

N+ov N (ct(t)+~)logN<~j<~ N 

Proof. Use Proposi t ions 1 and 2 to obtain 

1 
mN,~(A ) = ~  S:j/~N+ jE[Nj(t)] 

( N ) (  tJ~J-le-;(1 ;/N)t (35) 

where A is any Borel subset of [0, 1 ]. The Stirling estimate (21) yields 

1 log I j ( 1 T _ j / N ! ] _ l l o g N _ 3 )  
- 2  N _] 2 4J~ (36) 

which combines with (35) to give a bound that  we write in the form 

where 

mN't(A) <~ f A e--N/N(t'x)llN(dX) (37) 

1 
6+/N(dX) (38) ~N(dX) = N  j : l  

is the normalized counting measure and 

IN (t, X) = ( 1 -- X) log(1 -- X) -- X log t + X( 1 -- X) t + (log N)/2N 

+ (log { xt Ix(  1 -- x) ] 1/2 } )/N + 3/4N (39) 
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Writing 

IN(t, X) = It(x ) 4- Ju(t, x) (40) 

with It(x ) as in (26), we note that the remainder t e r m  JN(t, X) is increasing 
in x on (0, 3/4). On the other hand, 

mN'tE(c~(t)+~)l~ ' 1] 

=mu, t ( C ~ ( t ) + e ) - - , ~  +mx. t 1 (41) 
N " ' 

and the last term tends to zero as N ~  oo by Theorem 2(i). For the first 
term we use (37) with 

to get, for N large enough, 

mu,,(Au,,)<. {exp[- -N inf IN(t, X)]} #N(AN,,) 
x ~ A N ,  t 

~< exp{ --NIu(t , [~(t) 4- e] log N/N)} (43) 

In obtaining (43) we used the fact that JN(t, X) is increasing o n  AN, ~ and 
Lemma l(i). 

Finally, we get from (39) 

( IN t, [~(t) +~]  =[~( t )+e] - - - -~ ( - -1 - -1og t+t )  

l o g N [ I _ 3 ] N  L2 2J + O (  l~176 4- 

= e(t - 1 - log t) - - 7 +  O (44) 

We get from (43) and (44), noting that c~(t)> 0 when t r 1, 

lim sup mu,,(Au,~) = 0 (45) 
N ~ o o  

and since mN,~(AN.t)>i O, (34) follows. I 

822/64/1-2-7 
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3. T H E  E R D O S - R E N Y I  P R O C E S S  

Denote by ~N the set of all graphs (without multiple edges) on N 
labeled vertices. Define a Markov chain {G(~ ~, n=0,  1, 2,...} on Nu by the 
following transition probabilities: 

p l - ~ ( x )  = fl G ( N ) _  ~3 k ~ n + l  - -n  - -  

I c~l/ if the graph/~ can be obtained 

= from c~ by adding one edge (46) 

otherwise 

where I~1 denotes the number of edges of the graph c~; note that (N) is 
the total number of edges that can be supported by N vertices. In words, 
each step of the process consists in adding one edge, any of the (N)_ I~1 
remaining edges being equally likely to be chosen. Obviously, after (~) 
steps at most the complete graph is reached, and the definition of the 
process is supplemented by making this a trap state. 

In a series of papers that founded the theory of random graphs Erd6s 
and R~nyi ~H'12) studied extensively the asymptotic properties of the 
Markov chain G~ N) in the limit 

n 
N ~ o e ,  n ~ o e ,  ~ c > 0  (47) 

when the initial state is the empty graph. One of their most striking result 
is the following. (12-14) 

Theo rem 4. Let L(),) denote the size (i.e., the number of vertices) 
of the largest connected component of the graph 7. Then, with probability 
tending to one in the limit (47): (i) if c < 1/2, 

L(G(~N))/log N ~  (2c - 1 - l o g  2c) -1 (48) 

(ii) If c>1/2, 

L(G~N)) ~ 1 (2ce (49) 
N .= 7 .  

The striking change of regime that takes place at c = 1/2 is known in ran- 
dom graph theory as the emergence of the giant component. The similarity 
between this phenomenon and gelation of polymers is obvious. However, 
if one tries to relate the two, one has to face the difficulty that the 
Lushnikov and ErdBs-R6nyi processes have different state spaces; 
moreover, one is in continuous time and the other is discrete time. The 
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second point will be addressed in the next section; as for the first point, 
each polymer-state _n in ~'~N corresponds to a set of graph states in ~N. 
Hence the process ~,-~(U) t ~ ,  , n = 0 ,  1,2,...} induces naturally a process with 
states in ~u :  this is obtained by lumping together all the graph-states that 
have the same polymer-description. However, such a procedure does not 
preserve the Markov character of the original process; indeed, it is easy to 
see that unless special initial conditions are chosen, 

P[G(n4)+IE(O,O,O,I)IG(n4)e(1, O,I,O),G(n4)le(I,O,I,O)]=I (50) 

whereas 

P [ G ~ , e  (0, O, O, 1)lG(4)e (1, O, 1, 0)3 < 1 (51) 

This is because in the second case the (n + 1)th transition can be of the 
form 

I ~ 
) 

o 

i.e., (1, 0, 1 , 0 ) ~ ( 1 , 0 ,  1,0), whereas such events are precluded by the 
further conditioning of the first case. 

In fact, the question of the preservation of the Markov property under 
grouping of states is of much wider interest than the particular example 
under consideration, and we give a sufficient condition in a general setting: 

Theorem 5. Let {X, ,  n = 0 ,  1, 2,...} be a discrete-time Markov 
chain with states x l , x 2  ..... xj ..... Group states into sets A 1 , A  2 ..... A ...... 
A sufficient condition for the resulting process to retain the Markov 
property is that either of the functions 

f~ (x )=  P [ X , _  l e A~lXn= x] (52) 

g~(x) = P [ X  n +1 ~ A~ [Jfn = x]  (53) 

is constant on each set Aa for all e ,  i.e., f~(x) =f~,~ or g~(x) = g~,~ when- 
ever x e Ar 

Proof. 

P[Xn+ 1G An+ 1 [ X'I ~ A1,..., X n EAn] 

Z~= l Zxj~AjP[X~+ I e A~+ ,, X 1 =Xl ..... X , = x , ]  
- (54) 

Z~=l ZyjeAj PEX1 = Y,,.--, Xn = Yn] 

E j = l  ZxjeAjPEXn+ l e A,+ l IX, = x , ]  P[X1 = Xl,- . - ,  Xn = Xn] 
- (55) 

E ~ = ,  E y , ~ A j P [ X ,  = y ,  ..... x ~ =  y A  
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where the Markov property of the original process has been used. At 
this stage, it is clear that if g.+~(x.) is independent of x n for x n in An, 
expression (55) reduces to g.+~,., which is itself equal to P[Xn+le  
A.+11X. e A.], establishing the Markov property in a trivial way. 

In order to check the other version of the condition, we write (55) as 

n X n - - 1  Xj=l Zxj~Aj g.+l( n){l~/=l P[Xz=x,[Xs=xs, 1+ 1 <<.j<~n]} P[X.=x.] 
E j=~ {1-[,=1n-1P[Xz=y, IXj= yj, l+ 1 <~j<~ n] } P[X. = y . ]  

(56) 

which, using the Markov property and notation (52), reads 

{ ~_ ~ g.+l(x.)fl(x2)P[X2=x21X3=x3] 
j 2 xj~Aj 

- - -  P [ - X . _  1 = Xn_ 1 I X  n ~'~ Xn] P[X. =xn]} 

x ~ f~(y2)P[X2=yzlX3=Y3] 
j 2 yjeAj 

�9 . .P[X._I=y._~IX.=y.JP[X.=y.]t  I (57) 

Iff~(x) is independent of x for x in A~, this becomes 

{ ~= E g n + l ( X n ) f 2 ( x 3 ) P [ X 3 ~ - x 3 ] X 4 - ~ x 4 ]  
j 3 xj~Aj 

) 
�9 " .  P [ } t " n _  1 = X n _  1 I X  n = X n ]  P[-X. =Xn]~ 

E f2(Y3) P[X3 = Y3 [X4 = Y4] 
j 3 yjeAj 

...P[X._~ = y._l IX. = y.] p [ x . =  y.]}-~ 

Xx.~A.g.+l(x.)P[X,=x.] 
Zy.~A P[X.= y.] 

(58) 

=P[X.+I6A.+IIX. eA.] 

(59) 

proving the Markov property. | 
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Remark. In the above proof, we made repeated use of the formula 

P[XI=X,]X2=x2 ..... X , = x , ] = P [ X I = X l I X 2 = x 2 ]  (60) 

which is an easy consequence of the usual form of the Markov property. 
As we have already noticed, the Erd6s-R6nyi process fails in general 

to retain its Markov character when contracted to a polymer description. 
This leads us to define a modified Erdbs-ROnyi process {G,-(N), n = 0, 1, 2,... } 
with state space @~v the set of all graphs without cycle on N labeled vertices. 

The transition rule for ~ u )  is as for G(,N): 

{ ~  if the graph/? can be obtained 
--(N) __ ~(n N) from c~ by adding one edge P I - G , + I - f l l  = ~ ]  = (61) 

otherwise 

where the number P~ (independent of fi) will be computed shortly. We 
check now that ~N) satisfies the second criterion in Theorem 5: 

Proposi t ion  3. Take any graph ~ s n .  Then 

( 2jkn+n~ 
�9 N 2 ~ .2 n 

p[-c~.(U) E + ] ~ ( N )  = 0{ 1 = ~ - -  2 - . j=  1 J  j 
- - t - = n +  1 ~-jk } j2/+/j(F/j__ 1 ) 

- N  2 'r-,N "2// I --2. . . , j=lJ j 

if j < k  

if j = k  
(62) 

Proof. Since all transitions out of c~ have the same probability P~, we 
just have to count the number of transitions from c~ to _n~; ifjvak, such a 
transition is effected by adding an extra link between a vertex belonging 
to a j-mer and another one belonging to a k-mer within the graph c~, and 
this can be done in jknjn k ways, giving the total probability P~jknjn~. If 
j = k ,  one has to choose two distinct j-mers, so that the probability is 
P~jZnj(nj-1)/2. Finally, the number P= is determined by normalization: 

N N 

Z P:jknjnk+ �89 ~ P~j2n/(nj- 1)= 1 
j , k=l  j = l  
j<k  

(63) 

which, using Z N_ 1 jnj = N, yields 

P~ = 2 N 2 -  j2nj | (64) 
j = l  

Since the transition probability (62) depends on the graph c~ only 
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through its. polymer class tn, Theorem 5 applies and the contracted process 
y(N) m = 0 ,  1, 2,...} defined by 

x(~N) = n <:> (~N) ~ _n (65) 

is a Markov process on s N. We will see in the next section that [--~m , "  (N) 
m = 0, 1, 2,...} is closely connected to the Lushnikov process {_N,, t ~> 0} of 
Section 2. 

Remark. We showed in the discussion preceding Theorem 5 that in 
general the original Erd6s-R6nyi process loses the Markov property when 
graph-states are lumped into polymer-states. However, the Markov 
property is retained if one restricts one's attention to initial conditions 
concentrated on graphs with a fixed number of edges. 

4. RELATION BETWEEN THE LUSHNIKOV PROCESS 
A N D  THE M O D I F I E D  ERDOS-Rf:NYI  PROCESS 

It follows from Proposition 3 that the process ~A mfxr(N), m = 0, 1, 2,...} 
obtained by contracting the modified Erd6s-R6nyi process [see (65)] has 
the transition probabilities 

( 2jknjnk _ 
T~r-v(N) I-x~N)=- n] )N2 ZN=lj2nj if j < k  

= + = .2 (66) 
rk-'3m+l n-Jk ~ jZnj(ny--l) if j = k  

~X 2-2N=1 jzrtj 

Comparing this to (4) with Rjk = jk, we see that _X~m N) is the discrete- 
time Markov chain embedded in the Lushnikov process {N(t), t>~0}; in 
other words, if JN( t )  denotes the (random) number of transitions effected 
by the Lushnikov process during (0, t], we have 

P [_X(m N) --- _rt] = P[N(t)  = n IJN(t) = m] (67) 

Hence, if A N is any set of configurations in QN, 

N 
P[_N(t)~AN] = ~_~ P[_N(t)~AulJu(t)=m ] P[Jx ( t )=m]  (68) 

m = O  

N 

: ~ P[X~N)~AN] P[JN(t )=m] (69) 
m = O  

f PrY(N) e A~v] dFN ,(x) (70) 
[o,13 
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where Fu, t is the scaled probability distribution function of JN(t): 

FN,,(X) = P[JN(t)/N <<. x] (71) 

We see from (70) that in order to relate the asymptotic properties of _N(t) 
to those of ~Y(N)xN as N ~  0% it suffices to know the asymptotic distribution 
of JN(I)/N. But in Lushnikov's model each transition reduces the total 
number of polymers by one unit, so that 

N 
J u ( t ) = N -  ~ Nj(t) (72) 

/=  1 

We will use (72) to prove that JN(t)/N is asymptotically concentrated at 

j(t) = 1 - ~ gk(t) (73) 
k = l  

where 

k k 2 
g k ( t ) = ~ - . e  kttk-1 (74) 

First we prove that (73) is a lower bound for the expected value of JN(t)/N. 

Proposition 4. We have 

lim infE[JN(t) ]/N >~ j(t ) (75) 
N~oo  

Proof. For a n y O < ~ < l ,  wehave 

E[JN(t)] 1 1 1 
N - - ~  ~ E [ N j ( t ) ] - ~  ~ E[Nj(t)] (76) 

l <~j<~tN c~N<j<~N 

The last term in (76) is easily bounded: 

1 1 1 1 
N c~N <j<~N2 E [ N/(t) ] <--0~NN~N-- ~ jE[Nj(t)]  ~ c~N (77) 

<j<~N 

On the other hand, (22) implies 

__1 2 j j  - 2 E[Nj(t)]<~ Z j-~-. e -(a ~)JttJ-1 (78) 
N 1 <~j<~N 1 <~j<~:N 

<~ ~ JJ 2e-(1 ~)JttJ-1 (79) 
j = l  J !  
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where the infinite series in (79) converges whenever 

t• [-t0({~), /1((~)] (80) 

where to(e) ~< tl(c~) are the two roots of the equation 

te-/1 - ~)t = e-1 (81) 

Hence, for any t satisfying (80), 

E[,JN(t)] 1 j j -2  . . 
t > 1 -  J - ~  e-( l -~) j t t  j 1 _ - -  (82) 

N /_., 
j= 1 :~N 

so that 

lim- ~ f  E[ [~( I ) ]  ~ 1 - +  j : l  ~ jj-2j~c -(1-~)jttj-1 (83) 

This holds for any ~. Let ~ tend to zero and use dominated convergence to 
get the result (75) for any tea 1 [-note that l im:+o t0(a)=l i ra :+0 t~(~)= 1]. 
The inequality (75) holds also at t =  1 because E[ ,Ju( t ) ]  is an increasing 
function of t. | 

We show now that JN(t)/N is bounded above by j(t) in probability. 

P r o p o s i t i o n  5. For any e > 0 ,  

lim P[J~v(t)/N>~j(t) + e] = 0 (84) 
N~oo 

Proof. Using (72), we have,.for any I<~N, 

P[JN(t ) /N >~ j(t) + g] 

= P  xNk( t )<~l - - j ( t ) - -e  (85) 

<~P Nk(t)<~ l - - j ( t ) - - e  (86) 

{Nk(t) -- E[-Nk(t)] } ~< 1 - j(t) - ~<P N 1 

t N! 1 - ~ Nk(N - k)! gk(t) e '2tIN (87) 
k=l 

with gk(t) as in (74). We can rewrite (87) a s  FN, I(XN, I) , where FN, I is the 
probability distribution function of the random variable 

1 / 
E t  {Nk(t) -- E[,Nk(t)] } (88) 
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For fixed l, the random variable (88) is asymptotically concentrated at zero 
as N ~  oo because by (12) we can compute the vai~iance of any Nk(t)/N 
to be 

D [Nk(t)/N] = O(N- ~) (89) 

Hence 

lim FN, t (x )=I+(x)=[  1 if x~>0 (90) 
~v~oo ~0 if x < 0  

On the other hand, 

lim XN, t = l - - j ( t ) - - ~ - -  ~ gk(t)=--a+ gk(t)=xl (91) 
N ~ o o  

k = l  k = l  

By choosing l large enough, we can arrange to have xl < -e/2; hence, with 
this choice of l, there exists M such that 

XN. l < --e/4 whenever n ~> M (92) 

Thus 

FN, I(X N, I) <~ FN, I( - 5/4 ) (93) 

converges to zero as N tends to infinity. | 

Since JN(t)/N is bounded above by j(t) in probability, whereas its 
expectation is bounded below by j(t), it follows that it is asymptotically 
concentrated at j(t); the necessary argument to prove this is best stated as 
a general lemma: 

Lemma 2. Let {A,, n=1,2 ,3 , . . .}  be a sequence of random 
variables such that (i) 

Ys>0, lim P[An~>e] =0  (94) 
n ~ o o  

(ii) 

lim inf ElAn] ~>0 (95) 
n ~ o o  

and (iii) 

Ve>0, 3b~<oo: E[AnFA,>~5]<~b~ Vn (96) 
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Then (a) 

and (b) 

lim E [ A . ] =  lim E[IA. / ]=O 

Ve>0, lim PEIA.I>~eJ=0 
/ 7 ~ o o  

Buffet  and Pule 

(97) 

(98) 

Proof. Define 

A+ = {A. whenwhen A.>~0A. < 0 (99) 

We have, using the law of total probability and (96), 

E[A+]=E[A+IA .>>.~]P[A .>~a]+E[A+]A.<~]P[A .<~  ] (100) 

<~b~P[A.>~e] +~ (101) 

Thus, using (94), 
lim sup E[A + ] ~< e (102) 

n --* r 

Since (102) holds for any e and A + ~>0, we conclude 

lira E[A+]  =0  (103) 
n ----~ c o  

Formula (97) follows because 

lim sup EEIA.I ] = lim sup EE2A + - A.] (104) 

= - l im infEEA.] <~0 (105) 

Finally, (98) follows from (97) by Chebyshev's inequality: 

P[IA.I>~e]<<.e-~E[IA.I] | (106) 

We can now characterize the asymptotic distribution of JN(t)/N: 

T h e o r e m  6. For a n y ~ > 0  

lim P[lJN(t)/N-j(t)b ~>~] =0  (107) 
N ~  

Proof. Apply Lemma 2 with 

A N = JN( t ) /N- j ( t )  (108) 



Polymers and Random Graphs 105 

Conditions (i) and (ii) hold by Propositions 5 and 4, respectively. Condi- 
tion (iii) holds trivially because JN(t)/N<~ 1. | 

In order to investigate the properties of the function j ( t )  defined in 
(73), it is best to relate it to the series 

F(u) = ~ j j  1 J 
j=l  7 u (109) 

which is well known to have radius of convergence e-1 and to be equal to 
the smaller of the two solutions of the equation 

xe -x  = u, x ~ 0 (110) 

Proposition 6. (i) We have 

- - - I  duF(U) (111) j ( t ) =  l 1 ,e-t 

t o u 

(ii) 

t 
j( t)  = ~ whenever t~<l (112) 

and (iii) 

1 
j(t)l> 1--2 t  whenever t >  1 (113) 

Proo f .  Formula (111) follows from (73), (74), and (109) by a 
straightforward calculation. Moreover, by a simple change of variable, 

_ duF(U) 1 - V F ( v e  dv (114) 
t o u l I) 

But if t~< 1, we get from (110) 

F(ve-V) = v, O~ v ~ t (115) 

so that 

j ( t )  = 1 - (1 - v) dv = -~ (116) 
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On the other hand, for t > 1, 

1 1 I' 1 - v F(ve_V) dv j(t)  = 1 _1 1-VF(ve_V) dv_ t v 
- t o  v 

(117) 

l f l  l f f ~ _  ~) = 1 -  7 ( 1 - v ) d v +  7 F(ve dv (118) 

= 1 - ~ +  v F(ve ~)dv>>.1-27 I (119) 

Formulas (70) and (107) allow us to translate all the results that we 
know on _N(t) into properties of the modified Erd6s-R6nyi process _iX (N) 
and vice versa. For  instance, define the set of configurations containing 
polymers of size at least yN: 

A N ( y  ) = {n ~ Qiv: nj > 0 for somej  >~ yN} (120) 

C o r o l l a r y  2. (i) Let t o be as in Lemma i; then for any x <  to/2, 
e>O, 

lim P[-Y(N) GAN(g)]=:O (121) 
= L ~  ~ x N  

N - - +  o o  

(ii) Let fi(t) be as in Lemma 1; then for any x > 1/2, e > 0, 

lim ' ( N )  lnf P[-_XxN ~ A N ( f l ( j - l ( x ) ) - - g ) ]  > 0  
N ~ o o  

(122) 

Proof. (i) We get from (70), for any O<6<j(t), 

PI-_N(t) ~ AN(G)] >/f P[XxN(N) G AN(g)] dFu, t(x) (123) 
EAt) 6,1] 

But because of the absence of dissociation, the integrand is an increasing 
function of x, so that 

PEN(t) ~ AN(G)] /> Pry(N)  _ --L~2(j(t)_6)N~AN(e)] dFN, t(x ) (124) 
d [ j ( t )  -- 3, 1]  

The integral in the right-hand side of (124) tends to one as N ~  c~ by 
Theorem 6, so that 

lim sup P[_N(t) ~ AN(G)] ~> lim (N) sup P[_X(j(,) 6)N~AN(g)] (125) 
N ~ o o  N ~ o o  
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On the other hand, 
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1 ~ jNj(t)>~e] (126) P [ N ( t ) e A N ( e ) ] = P  NeN<~j<~N 

<<.- E -- ~ jNj(t) (127) 
8, N eN<~j<~N 

as N--+oo when t<~lo by Theorem2(i). The conclusion 

we have, as in (126), 

P[_N(t)~AN(fl( t)-s  = P[ZN)~ 0] =P[ZN>/ f l ( t ) - e  ] (132) 

Hence 

E[ ' /N]  =E[ZulZu>~f l ( t ) - -e l  P[ZN ~> f l ( t ) -  e] < ~ P [ Z x ~ f l ( t ) - e l  

(133) 

1 
Z N = ~  ~ jNj(t) (131) 

On the other hand, introducing the random variable 

(130) 

tends to zero 
follows since j(t) = t/2 when t < 1. 

(ii) We get from (70), for any 0 < 6 < l - j ( t ) ,  

f P[-Y(U)~Au(fl(t)--g')] dENt(X ) P[_N(t) ~ AN(fl(t ) -- e)] ~< - - L ~ N  
[0, j ( t )  + 6]  

+f( dFN, t(x) ( 1 2 8 )  j(t)+6,1] 

AN(fl(t) -- e)] f dFN, t(x) .< p F y ( N )  
~LX--x (j(t)  + a ) N  

[0, j ( t )  + ~] 

+ ;(j(,) + ~, 1~ dFw,,(x) (129) 

again using the fact that the integrand is increasing in x. But by Theorem 6 
the first integral in (129) tends to one and the second to zero as N ~  oe. 

Hence 

lim inf P [_N(t) e AN(fl(t ) -- e)] ~< lim inf P[_XI~I) + 6)N ~ AN(fl(t) -- e)] 
N ~ o o  N ~ o o  
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Combining (31), (130), (132), and (133), we get 

l im'  (N) An(~(t ) e ) ] ~ > l i m i n f E [ Z n ] ~ > l  x~,(t) l n f  P [ X ( j ( 0  + ~ )N ~ - -  - -  > 0  
N ~ o v  N ~  t 

(134) 

The conclusion follows by putting j( t)+ 8 = x and using the fact that j(t) 
and fl(t) are increasing functions of t. | 

One can deduce from Theorem 3 that when x < t0/2, the mean numeri- 
cal density of polymers of size :r log N or more tends to zero for the 
process v(N) as N ~  oo; however, in order to prove that the probability of ~ x N  

X n) having a polymer of size exceeding Z log N tends to zero for a suitable x N  

Z, we need a stronger version of Theorem 3. 

Proposi t ion 7. Let t < to, with to as in Lemma 1; then there exists 
7 > 0 such that for every e > 0, 6 > 0, 

lim N (~/a-6) l ~ e~JE[Nj(t)]=O (135) 
N ~  oo N (~ + e) log N<~j<~N 

where 

~(t) = ( t -  1 - l o g  t - 7 ) - 1  (136) 

ProoL As in the proof of Theorem 3, we define the measures 

1 
Iu,,(A) = N j:j/~N~A eTJE[Nj(t) ] (137) 

It follows from (37) that 

IN, t(A) <<. f e -NKu(t' X)#N(dX) (138) 
".4 

where 

KN(t , X)= In(t, X ) -  7X (139) 

Now we choose 7 (depending on t) sufficiently small to have 
I t ( x ) -  y (x ) >  0, 0 < x ~< 1, and we argue as in (41), (43). The result follows 
since 

 ,ogN (,og N) 
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so that 

I N , , [ ( ~  ~-  g)(log N)/N, e/4] = O(N ~/s) (141) 

whereas lN,,(3/4, 1] tends to zero exponentially fast as N ~  oo. II 

We can now state a result on the probability for N(t) and y ( m  to be -- ~ x N  

in the set of configurations 

FN(y)= {_n~N:  n j > 0  for somej>~ylogN} (142) 

containing polymers of size y log N or more: 

Let 7 and ~ be as in Proposition 7. Then: Coro l la ry  3. 

(i) F o r t < t o  

(ii) 

Proof. 

lim PIN( t )  e / 'N(2~)]  - =  0 (143) 
N~cx3  

For x < to~2 and any 6 > 0 

lim P[X(~ N) e FN(Z~(Zx + 5))] = 0 
N ~ o c  

Let the random variable YN be defined by 

(144) 

1 
YN-N2 ~ ~ e~JNj(t) (145) 

log N<~j<~ N 

Then by (135) with e = ~ 

lim N 1 a E [ Y N ] = 0  , V 6 > 0  (146) 
N ~ o o  

But in vmw of the definitions (142), (145), 

P [_N(t) e / 'N  (2~)] = P [  YN > 0] = P [  YN >I U2a~- 1] 

so that 

(147) 

E[YNJ = El- YNI YN~ N 2 ~ - 1 ]  p[- yN ~> N2a~-1] 

>~N2~7 Ip[yN>~N2a~ 1] (148) 

Combining (147) and (148), we obtain 

P[_N(t) e FN (2~)] ~< N 1 - 2a~E[ YN] (149) 

which tends to zero by (146), thus proving (143). Formula (144) follows 
from (70) and (143) as in Corollary 2(i). | 
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